
noKodr User Guide

By Enzigma Solutions LLP

CONTENTS

Contents

I Introduction 2

I.I Orektic . 2

I.II Enzigma LLC . 2

II Product Introduction 3

III Product Features 4

IV Product Versions 5

V Configuration Guide 6

V.I Installation Steps . 6

V.II Pre-requisites . 7

V.III Step by Step Walkthrough . 8

V.III.1 Setup . 8

V.III.1.1 Types of Layout and Layouts Creation 8

V.III.1.2 Layouts and its Row Actions . 10

V.III.1.3 Components and its Config . 13

V.III.1.4 noKodr Components and it’s Attributes 15

V.III.1.5 Models in Layout . 71

V.III.1.6 Charts . 74

V.III.1.7 Variables . 77

V.III.1.8 Workflow . 80

V.III.1.9 Listview Creation and its Config . 86

V.III.1.10Publish Layout and List Views . 96

V.III.1.11Add Publish Layouts & List Views to Flexi Pages 97

V.III.1.12REST API Configuration . 103

VI Contact Us 125

1

I Introduction

I.I Orektic

Orektic is known for state-of-the-art cloud-based, SAAS solutions that help our clients to

transform the way they do business.

We exist to solve the critical issues facing our clients, both large and small. Our unique approach

is not only what differentiates us, but also what makes us successful. We provide a broad range

of services and solutions to help organizations facilitate change, achieve their vision, and

optimize performance and productivity.

From implementing new business strategies to ultra-efficient work processes, Orektic is ready to

tackle any challenge and put you on the path to success. With state-of-the-art cloud-based,

SAAS solutions transform the way you do business.

Orektic is one of the software companies from the Enzigma group.

� � � �

I.II Enzigma LLC

Enzigma LLC is the exclusive reseller of Orektic products.

2

https://www.linkedin.com/company/orektic-solutions-llp
https://www.facebook.com/Orektic-Solutions-LLP-100469331727274/
https://www.youtube.com/@orektic
https://www.orektic.com/

II Product Introduction

With our innovative thoughts, we have come up with a new AppExchange Package that will help

the Salesforce admin, and developers which provides drag and drop-able Lightning Web

Components that can be used on the home page, or the Record details page to ease the use of

records according to the user’s custom requirement.

Using noKodr you can design a UI as you want using different components, which are easy to

integrate and configure with lots of features. There are various components that enhance your UI

and give you a better experience and also you have the power of client (browser) side user flows

and validations using workflows that are simple and easy to design as per your business logic

and workflows provide various actions that are most suitable and usable actions that provide you

with strong control over user experience.

3

III Product Features

• UI Workflows with finer control for business automation

• Event handling and workflow mechanism to communicate between components

• Conditional visibility/validation/disabling of fields and components

• Amazing repeater to interact with multiple records

• Built for admins, not for developers

• Interactive UI with powerful interdependent components

• More than 15 readily available components to create custom UI

• User-friendly configuration

• Empowering the admins

• Low to no dependency on developers and development process

• Enables the organization to go to production faster at a low cost

• Dedicated support team

4

IV Product Versions

Version Release Date Description

noKodr 2.1/2.1.0 02/20/2024

• Added a new feature that is Master-Detail

Re-parenting

• Introduced our Layouts and List View on

the Digital Experience Community Site

• Enhanced the Filter Designer Functional-

ity and layout optimization

• Addressed some minor bugs to enhance

the performance of the Application

• Changes for Branding from PWR Forms

to noKodr Enhanced Time Field Function-

ality

5

V Configuration Guide

V.I Installation Steps

To install noKodr managed package do follow the mentioned steps here:

1. To install noKodr click here

2. The link will direct you to the PWR Commons application page, it is a prerequisite package

for noKodr

3. Click on Get it now from the apps information page

4. Enter the credentials for the org in which you want to install and log in

5. Choose to install the package in either the production org or Sandbox by clicking ”Install in

Production” or ”Install in Sandbox”

6. Tick the checkbox indicating your agreement with the terms and conditions, then proceed

by clicking on the ”Confirm and Install” button

7. Select the desired installation option (Install for All Users, Install for Admins Only, or Install

for Specific Profiles), and click ”Install”

8. Click ”Done” once the installation is complete

9. It may take some time to complete the installation package. You will be notified through

Email once the installation is completed

10. Now open the PWR Commons application from the application manager

11. Click ”Install Now” in front of the noKodr application in the list of products

12. Enter the credentials of the logged-in organization and log in

13. Select the desired installation option, and click ”Install”

14. Click on Done once the installation is completed

15. It may take some time to complete the installation package. You will receive an email

notification when the installation is finished

** For reference and more details about package installation, please click here

Any potential customer with a package link for noKodr from the support or sales team, then to

install the noKodr managed package do follow the mentioned steps here:

1. Open the installation URL received from our sales or support team in the browser.

2. Enter your credentials for the Salesforce organization in which you want to install the

package and then click on Log In.

3. Repeat the steps as mentioned above from step 13

6

https://appexchange.salesforce.com/appxListingDetail?listingId=a0N4V00000GZCsrUAH&tab=e
https://trailhead.salesforce.com/en/content/learn/modules/trailhead_playground_management/install-apps-and-packages-in-your-trailhead-playground

V.II Pre-requisites

V.II Pre-requisites

To get started, you need to make sure you are all good with the list of prerequisites/checklists

mentioned below.

As a prerequisite, the Salesforce admin needs to make sure that the Salesforce org is already set

up with their domain name.

In case your org is not set up with the Domain Name then the contents of the Package will not be

available for use. To enable the domain name open Setup from the Quick Find box, find “My

Domain” and set up a Domain Name for your org. For more details and information, please

click here.

7

https://help.salesforce.com/s/articleView?id=sf.networks_custom_domain.htm&type=5

V.III Step by Step Walkthrough

V.III Step by Step Walkthrough

Using noKodr you can design a UI as you want using different components, which are easy to

integrate and configure with lots of features. There are various components that enhance your UI

and give you a better experience and also you have the power of client (browser) side user flows

and validations using workflows that are simple and easy to design as per your business logic

and workflows provide various actions which are most suitable and usable actions which provide

you a strong control on user experience.

noKodr is a bundle of the following lightning components, which helps the Salesforce

Admin/Developers achieve their requirements and goals with easy drag-and-drop-able lightning

components. The below components help in overcoming the limitation of Salesforce

configuration.

• Layouts

• List Views

V.III.1 Setup

V.III.1.1 Types of Layout and Layouts Creation : There are two types of Layout in noKodr

that a user can configure which are as follows:

• Application Layout: In Application Layout, users can design a Layout according to their

requirements with the help of Components, Models, Variables, Events, etc.

• Record Layout: Record Layout is an Object Specific Layout, In Record Layout, there are

some predefined data like Models, Workflows, and Actions. In Layout one default ’Form’

component is used through which the user can create or update object-specific records.

Creation of Application Layout: Here are the steps required to configure the Application

Layout.

1. To create an application layout, click on setup then navigate to the layouts page

8

V.III Step by Step Walkthrough

Figure 5.3.1: Layouts

2. Click on ’New’

3. Enter all the mandatory fields

4. Select type as Application

5. Click on Save

Figure 5.3.2: New Application layout

Creation of Record Layout: Here are the steps required to configure the record Layout.

1. To create a Record layout, click on setup then navigate to the layouts page

9

V.III Step by Step Walkthrough

2. Enter all the mandatory fields and select the Object for which you want to create the layout

and type as Record

Figure 5.3.3: New Record Layout

This will create a record layout and it will navigate you to the Layout Designer page

V.III.1.2 Layouts and its Row Actions : On the Layout, we can perform five actions present

as a drop-down value from the row action provided on the Layouts.

Figure 5.3.4: Layouts and operations

10

V.III Step by Step Walkthrough

1. Design: With the help of design action you will be able to design the Layout as per

business requirements. Layout Designer allows to Drag and Drop of various Components

in the desired section of the Record Layout

Figure 5.3.5: Layout Designer

2. Preview: Previews allow you to see how the layout will appear without having to run the

entire Layout. Previews can help identify layout issues, such as overlapping components,

incorrect spacing, or alignment problems, before saving the entire Layout

3. Edit: With the help of the edit action the user will be able to edit/update the Layout

Figure 5.3.6: Edit Layout

11

V.III Step by Step Walkthrough

4. Delete: With the help of the Delete action you can delete that specific layout out

Figure 5.3.7: Delete Layout

5. Publish: noKodr gives the option to Publish Layout and List Views. Publishing helps the

users to use Layouts and List Views on the Home Page or Record Page

Note: Without publishing, you cannot use Layouts and List Views on the home page.

Figure 5.3.8: Publish Layout

12

V.III Step by Step Walkthrough

V.III.1.3 Components and its Config :

• Components: Components is an HTML UI Where the user can Drag and Drop the

Component in the Layout. Here are some common attributes of various components

Figure 5.3.9: Components

• How to Configure any Component:

1. Go to Layout Designer

Figure 5.3.10: Layout Designer

2. Search and select the Component

13

V.III Step by Step Walkthrough

Figure 5.3.11: components

3. Drag and drop the Component in the layout. You can also select the drop zone in a

layout and then click on the component it will add in place of the drop zone.

Figure 5.3.12: Components

4. Configure the attributes of each component as per your requirement which is

available, once you drag and drop the component on the layout designer, on the

right-hand side attributes vary according to the components.

14

V.III Step by Step Walkthrough

V.III.1.4 noKodr Components and it’s Attributes :

1. Section: Section is nothing but a Container, which contains multiple components like Form,

Table, Badge, etc. The Section is a container with a header that is used to group related

content. Users can collapse the Section by clicking on the header or on the drop-down

arrow also users can add actions to the Section header.

Attributes of Section:

Figure 5.3.13: Attributes of Section

• Basic:

– Header: The header is a short description to define the Section. It is displayed at

the top left of the Section. e.g. in the below screenshot, client details are used to

specify the header of the Section

– No Header: If the No Header checkbox is checked then the header will not be

visible on the Section

15

V.III Step by Step Walkthrough

Figure 5.3.14: No Header

– Is Collapsible: You can make the Section collapsible by checking the ’Is

Collapsible’ checkbox.’Is Collapsible’ is used in the Section for a better User

Experience. On clicking the down arrow or on the Section header the Section will

collapse or expand.

Figure 5.3.15: Is Collapsible

– Actions: You can add multiple actions and each action is displayed as a button.

Only two actions will be displayed on the Section header and the rest of the

actions will be displayed in a dropdown. By clicking on the button it performs a

particular action e.g. invoking a specific action or workflow.

16

V.III Step by Step Walkthrough

Figure 5.3.16: Action

– Overflow After: Overflow After an attribute is used to display the actions in list

format after reaching its entered limit. By default, the value is 3 which means the

three actions will displayed on a section header. If you added the new action

despite having 3 actions then the new action will appear in the drop-down list

section.

• UI:

– Component Size: The user can modify the size of the component in the layout as

per grid size.

In the following example, the section component has a size of 3 and the inside

section page header has a component size of 2

Figure 5.3.17: component size

17

V.III Step by Step Walkthrough

Figure 5.3.18: component size

– Padding Location: Defines the position of the padding for a component. The

padding creates extra space within a component.

Figure 5.3.19: Padding location

Types of Padding Locations:

(a) Around: Creates padding around the component

(b) Top: Creates padding at the top of the component

(c) Left: Creates padding at the left side of the component

(d) Bottom: Creates padding at the bottom of the component

(e) Right: Creates padding at the right side of the component

(f) Horizontal: Creates padding horizontally

18

V.III Step by Step Walkthrough

(g) Vertical: Creates padding vertically

– Padding Size: The padding size of the component can be set to None, XXX-Small,

XX-Small, X-Small, Small, Medium, Large, X-Large, XX-Large

– Margin Location: Defines the position of the margin for a component. Margin

creates extra space around a component.

Figure 5.3.20: Margin

Type of Margin Locations :

* Around: Margin gets added around the component

* Top: Margin gets added at the top of the component

* Left: Margin gets added at the left side of the component

* Bottom: Margin gets added at the bottom of the component

* Right: Margin gets added at the right side of the component

* Horizontal: Margin gets added horizontally

* Vertical: Margin gets added vertically

– Margin Size: The margin size of the view can be set to None, XXX-Small,

XX-Small, X-Small, Small, Medium, Large, X-Large, XX-Large.

– Style: The style attribute is used to add styles to a Component, such as color, font,

size, and more. Setting the style of a Component can be done with the style

attribute. The style attribute has the following syntax: “property: value” The

property is a CSS property. The value is a CSS value.

19

V.III Step by Step Walkthrough

Figure 5.3.21: Style

– Layout Type: We can set the layout type in two ways as given below:

– Grid: The Grid Layout type offers a grid-based layout system, with rows and

columns, making it easier to design a Layout.

Figure 5.3.22: Grid

– Float: The Float layout type is used for positioning and formatting components.

The Float property can have one of the following values:

* Fit to Content:

20

V.III Step by Step Walkthrough

Figure 5.3.23: Fit to content

* Equally Distributed:

Figure 5.3.24: Equally Distributed

– Visibility: The visibility property specifies whether or not a component is visible on

the layout or not. The following are the visibility types:

* Never: The field will not be visible at all

* Always: The field will be always visible

* Conditional: Depending on the visibility criteria, the component can be set as

visible or not visible.

– Component: This field shows the name of the components with the count of its

usage. e.g. if you are adding the section for the third time in a layout then it will

display labeled as Section 3

21

V.III Step by Step Walkthrough

2. Tab: Tab component is used as vertical tabs or horizontal tabs. When you add multiple

Tabs, the Tab label is displayed horizontally on the top of it if it’s a Tabs component and if

it’s vertical then the label is on the left-hand side. If you click on the label of the Tab, related

tab content is displayed, If it’s horizontal then on the bottom, and if vertical then on the

right-hand side.

• Attributes of Tab:

Figure 5.3.25: Attributes of Tab

• Config:

– Label: The label is a short description given to the Tab. Generally, the label is

displayed in the component at the top left corner. e.g. For the below screenshot

Personal Details is used to specify the first tab label and Educational Summary is

used to specify the second tab label.

Figure 5.3.26: Tab Label

22

V.III Step by Step Walkthrough

– Icon: The icon is a visual element that gives the idea of the context. Users can

search and use icons manually through the icon box that they will display at the

beginning of the label.

• UI: Same as defined for Section Component.

– Read Only: This property specifies whether or not a component is ReadOnly and

the following are the ReadOnly conditions:

* Never: The field will never be in Read Only I.e always editable

* Always: The field will be always read-only

* Conditional: Depending on the read-only criteria, the field can be set as

Read-only or not

– Disability: This property specifies whether or not a component is Disable and the

following are the disability conditions:

* Never: The field will never be disabled

* Always: The field will be always disabled

* Conditional: Depending on the disability criteria, the field can be set as

disabled or not

– Component: Same as defined for the section component

3. Tabs: Tabs are nothing but the Set of Tab. Tabs keep related content in a single container

that is shown and hidden through navigation. It is a container and represents the list of a

Tab used for grouping the related content in a single container. When you add multiple

tabs, the tab label is displayed horizontally on the top of the Tabs component. If you click

on the label of the Tab, related tab content is displayed on the bottom side. All components

except the Navigation Node can be added to the Tabs.

• Attributes of Tabs:

Figure 5.3.27: Attributes of Tabs

• Config:

23

V.III Step by Step Walkthrough

– Default Tab: You can select a Tab that will be displayed as the Default Tab. When

the layout is rendered the Default Tab will be displayed on the Tabs. e.g. You

have three tabs Personal Details, Educational Details, and Address Details and

you set a default tab 1 then you can land on the Educational Details tab when you

open the form.

– Overflow Limit: Limit lets you decide the number of tabs you want to display. If the

Tab limit exceeds the entered value, then the remaining tabs will appear in

drop-down list format. If you enter the value for example 4 then it will display four

tabs and if you added the above four tabs, then it will display the fifth tab in the

drop-down list format.

Figure 5.3.28: Tabs Overflow Limit

• UI:

Same as defined for the Section component.

• Visibility:

Same as defined for the Section component.

• Component:

Same as defined for the Section component.

24

V.III Step by Step Walkthrough

4. Verticals Tabs: The Vertical Tabs is a container.The Vertical Tabs component is used for

grouping the related content in a single container. Tabs can be added vertically and

generally label displays on the left-hand side. If you click on the label of the tab, the related

tab’s contents are displayed on the right-hand side. All components except the Navigation

Node can be added to the Vertical Tab.

• Attributes of Vertical Tabs:

Figure 5.3.29: Attributes of Vertical Tabs

• Basic:

– Show Tabs On Right: Vertical Tabs are shown by default on the left side of the

layout. By checking the checkbox, the tabs will be displayed on the right side.

Figure 5.3.30: Show Tabs on Right

• Config:

– Default Tab: You can select a Tab that will be displayed as the Default Tab.When

the layout is rendered the Default Tab will be displayed on the Tabs. e.g. If You

have three tabs Personal Details, Contact Details, and Educational Details and

you set Contact Details as the default tab then you will land on the Contact Details

tab when you open the form.

• UI:

Same as defined for the Section component earlier.

25

V.III Step by Step Walkthrough

• Visibility:

Same as defined for the Section component earlier.

• Component:

Same as defined for the Section component earlier

5. Form: The Form serves as a container for capturing user input. To enable the Form to

function, you must associate the model with it. Once the model is linked, the fields

corresponding to the selected object during model creation will appear on the left side. You

have the flexibility to drag and drop these fields into the Form. All the fields within it will be

visible on the left side. Multiple actions can be added to the Form, presented as buttons.

You have the option to designate one action as the primary action.

• Attributes of Form:

Figure 5.3.31: Attributes of Form

• Basic:

– Model: All models you have created will appear in the list. You can select a

specific model from the list to save and display the field value. Only one

model(Record Type - Single) can be bound at a time.

26

V.III Step by Step Walkthrough

Figure 5.3.32: Model

– Field Layout: Field Layout enables you to arrange the field on the form.

Types of layout:

* Stacked: In a stacked layout, the input/output field is positioned beneath the

field label with a slight margin around the label.

* Horizontal: In a horizontal arrangement, the input/output field is positioned

ahead of the field label with a slight margin surrounding the label.

Figure 5.3.33: Field Layout

* Single Column: In a Single Column layout, the input/output field size is larger

than the field label, distinguishing it from a horizontal layout.

* No Label: In the No Label layout, only the input/output field is visible without

displaying the label name.

– No Action Bar: If the ”No Action Bar” checkbox is selected, the action bar will not

appear on the form.

27

V.III Step by Step Walkthrough

Figure 5.3.34: Basic

– Overflow After: Same as defined for the Section component earlier

– Actions: You can include multiple actions, with each action appearing as a button.

When you click on a button, it initiates a specific action or workflow. The form will

show only three actions, while the remaining actions will be accessible from a

drop-down menu.

* Primary Action: You can choose a primary action for the form from the list of

actions available. Pressing the Enter key will execute the Primary Action.

Figure 5.3.35: Primary Action

• UI:

Same as defined for the Section component earlier.

• Visibility:

Same as defined for the Section component earlier.

• ReadOnly:

This property specifies whether or not a component is ReadOnly and the following are

the ReadOnly conditions:

28

V.III Step by Step Walkthrough

– Never: The field cannot be read-only

– Always: The field will be always read-only

– Conditional: Depending on the read-only criteria, the field can be set as read-only

or not

• Disability: This property specifies whether or not a component is Disable and the

following are the disability conditions:

– Never: The field cannot be disabled

– Always: The field will be always disabled

– Conditional: Depending on the disability criteria, the field can be set as disabled or

not

• Component:

Same as defined for the Section component earlier.

6. Table: Table is used to show multiple records of objects to the user and is also able to

perform multiple operations on that. For the Table component, we bind the Multiple Record

Count Model. Below are the table attributes.

• Attributes of Table:

Figure 5.3.36: Attributes of Table

• Basic:

– Model: Models are used to integrate the Objects of Salesforce with noKodr, it

works as a mediator between the Salesforce and noKodr app. All models you

have created will appear in the list. You can select a specific model from the list to

save and display the field value. Only one model(Record Type - Multiple) can be

bounded at a time.

– Hide Selection: By enabling the checkbox we can hide the selection box in front of

records in the table.

– Show Index: By enabling the checkbox we can show the index value in front of

records in the table.

29

V.III Step by Step Walkthrough

– Hide Sorting: By enabling the checkbox we can hide the sorting of records in

ascending or descending order.

– Hide Re-sizable: By enabling the checkbox we can hide re-sizing the width of

columns in the table.

– Hide Search: By enabling the checkbox we can hide the search box on the table

– Hide Page Size: By enabling the checkbox we can hide the page size drop-down.

– No Header: By enabling the checkbox we can hide the header part of the table.

– No Footer: By enabling the checkbox we can hide the footer part of the table.

– Page Size Options: By using page size options we can set multiple page size

options for the use.

– Table Actions: Table Actions are the actions that are given at the top right corner

of the Table that perform table-specific actions like

* New: With the help of New action you can create a New Record.

* Refresh: With the help of Refresh action we can refresh the table data.

Figure 5.3.37: Table Actions

– Row Actions: With the help of Row Actions, you can perform row-specific actions

like

* Edit: With the help of the edit action, you can edit the record.

* Delete: With the help of the delete action you can delete that specific record.

30

V.III Step by Step Walkthrough

Figure 5.3.38: Row Actions

– Column Actions: With the help of Column Actions, you can perform

column-specific actions like

* Push Modal: With the help of the Push modal, on clicking the specified column

record, we can push a different modal.

* Toaster: With the help of toaster action, we can display a toaster by clicking

the specified column record.

Figure 5.3.39: Column Actions

• Config:

– Is Export Supported?: By enabling the checkbox we can export the records from

the table in CSV, Excel, or PDF format.

• UI:

Same as defined for the Section component earlier.

31

V.III Step by Step Walkthrough

• Visibility:

The visibility property specifies whether or not a component is visible and the following

are the visibility types:

– Never: The field cannot be visible

– Always: The field will be always visible

– Conditional: Depending on the visibility criteria, the component can be set as

visible or not

• Component:

This field shows the name of the components with the count of their usage. e.g.: if you

are adding the section for the third time in a layout then it will display with the label

Section 3

7. Badge: Bits of information are contained in colorful text components called badges. It’s

employed to emphasize information and classify stuff. Unread notifications or the labeling

of a text block can both be done using a badge. Because a badge cannot contain a

hyperlink, it is ineffective for navigation.

• Attributes of Badge:

Figure 5.3.40: Attributes of Badge

• Basic:

– Variant: Used to display the badge in different colors. Below are the different

types of variants available:

* Default: Default is the option used to display the default color i.e. white for the

badge.

* Inverse: Inverse is a variant of Badge, which is displayed in Grey color.

* Lightest: Lightest is a variant of Badge, which is displayed in White color.

* Success: Success is a variant of Badge, which is displayed in Green color.

* Warning: Warning is a variant of Badge, which is displayed in Orange color.

32

V.III Step by Step Walkthrough

* Error: Error is a variant of Badge, which is displayed in Red color.

– Left Icon: The user can select the icon from the icon list and place that icon on the

left side of the Badge.

– Right Icon: The user can select the icon from the icon list and place it on the right

side of the Badge.

Figure 5.3.41: Basic

• UI:

Same as the Section component described earlier.

• Visibility:

The visibility property specifies whether or not a component is visible and the following

are the visibility types:

– Never: The field cannot be visible

– Always: The field will be always visible

– Conditional: Depending on the visibility criteria, the component can be set as

visible or not

• Component: This field shows the name of the components with the count of their

usage. e.g.: if you are adding the section for the third time in a layout then it will

display with the label Section 3

33

V.III Step by Step Walkthrough

8. Repeater:The Repeater is a container where you can add various components. You have

the flexibility to determine the appearance of the user interface (UI). The Repeater will

replicate the components multiple times based on the number of records in the model.

• Attributes of Repeater:

Figure 5.3.42: Attributes of Repeater

• Basic:

– Model: The Repeater needed multiple records, so it needed a multi-record model.

* Creation of a New Model: You can select a model from the list or you can

create a new model by clicking on the ”Create New Model” option for your

Repeater.

Figure 5.3.43: Model

* Context Models: An auto-generated Context Model is created using a

multi-record model.

Figure 5.3.44: Context Model

• UI:

Same as the section component explained earlier.

• Visibility:

The visibility property specifies whether or not a component is visible and the following

are the visibility types:

– Never: The field cannot be visible

34

V.III Step by Step Walkthrough

– Always: The field will be always visible

– Conditional: Depending on the visibility criteria, the component can be set as

visible or not

• Component: This field shows the name of the components with the count of their

usage e.g.: if you are adding the section for a third time in a layout then it will display

with the label of Section 3.

9. Icon: Represents a visual element that provides context and enhances usability. Users can

easily find different categories of icons in the category section and can set only one Icon at

a time.

• Attributes of Icon:

Figure 5.3.45: Attributes of Icon

• Basic:

– Icon Picker: Used to pick the icons from different categories like utility, action,

custom, doctype, and standard and also can set the size of the icon.

• UI:

Same as the Section component described earlier.

• Visibility:

The visibility property specifies whether or not a component is visible and the following

are the visibility types:

– Never: The field cannot be visible

– Always: The field will be always visible

– Conditional: Depending on the visibility criteria, the component can be set as

visible or not

• Component: This field shows the name of the components with the count of its usage

e.g.: if you are adding the section for the third time in a layout then it will display with

the label Section 3

35

V.III Step by Step Walkthrough

10. List View: The List View component displays records from various objects, enabling users

to perform multiple operations. It presents records in a tabular format with rows and

columns, offering features like pagination, search, sort, and data export. Each object can

have multiple List Views, but each List View is associated with a single object.

• Attributes of ListView:

Figure 5.3.46: Attributes of ListView

• Basic:

Figure 5.3.47: Basic

– Object: You are required to choose the object for displaying the List View. Only

standard and custom objects will be available for selection here; metadata and

system objects are excluded from the list.

– List View Name:

* One object can have multiple List Views

36

V.III Step by Step Walkthrough

* You can select only one List View at a time

* You can select the List View name from the list

* List View will be visible once you select an object and List View

– Is List View Selectable:

* This allows the end user to change the List View at runtime

* If selected it shows a drop-down icon next to the object selector

– Is Object Selectable:

* This allows the end user to change the object at runtime

* If selected it shows a drop-down icon next to the List View selector

– Table Actions:

* You can create multiple table actions on the List View

* You can only show two actions, which are visible in the top right corner, and

the rest of the actions are displayed under a drop-down at the right

* These actions are mainly used to perform operations such as create, refresh,

etc. on the selected records or unselected records

* Each action has a workflow that actually performs an operation

– Steps to Create Table Action

* You can add the table actions by clicking on the ’+’ icon

* Fill in all the details in the Create Table Action model and click the Save button

Figure 5.3.48: Table Actions

37

V.III Step by Step Walkthrough

Figure 5.3.49: Update Table Actions

– Overflow After:

* Overflow After an attribute is used to display the actions in list format after

reaching its entered limit

* By Default the value is 3 which means the three actions will displayed on a

section header

* If you added the new action despite having 3 actions then the new action will

appear in the drop-down list section

Figure 5.3.50: Basic

– Row Action:

* Actions to be performed at the record level for the respective record

* These actions are mainly used to read, update, or delete a single record

* Each action has a workflow that actually performs an operation

38

V.III Step by Step Walkthrough

* Default row actions are edit, delete, and view, but you can create more actions

as per your needs as shown below

* Steps to create Row Action

* You can add the row actions by clicking on the ’+’ icon

Figure 5.3.51: Row Actions

* Fill in all the details in the Create Row Action model and click the Save button

Figure 5.3.52: Update Row Action

– Column Action:

* You can set the actions at the column level on the List View

* You can assign only one action to any column

* When you click record in the column action gets executed

* Each action has a workflow that actually performs an operation

39

V.III Step by Step Walkthrough

* When you set column action, that record in the cell becomes a link

* When the user clicks such a record, the action bound to that column gets

executed

* Steps to create Column Action

* You can add the column actions by clicking on the ’+’ icon

Figure 5.3.53: Column Actions

Fill in all the details in the Create Column Action model and click the Save button

Figure 5.3.54: Update Column Action

– Layout for New :

* You can set the layout for table action New

* When you click the New button layout that you set will open

40

V.III Step by Step Walkthrough

– Layout for Edit Is Same As New: If the ”Layout for Edit Is Same As New” checkbox

is enabled, the layout chosen from the ”Layout For New” pick list will be used for

both New and Edit operations. If disabled, users can select any layout available in

the system for editing purposes

– Layout for Edit: You can select any layout from the drop-down for editing purposes

– Offset:

* You can set the offset for the query on the object

* If the offset is “n“ then the query will take the records “n+1” onwards

* For e.g. if there are 200 records and you set offset 100 then it will show

records from the 101st record on the List View

– Limit:

* Number of the records to be queried at once

* e.g. if there are 200 records of an object and you set a limit of 100 then it will

query the first 100 records and show them on the List View

– Order By:

* You can set the order by on the fields to records to be queried and displayed

in the List View

* You can order records in an ascending or descending manner

• Config:

Figure 5.3.55: Config

– Icon Picker:

* You can select the icon to be displayed on the List View

* Generally icon displays on the left side of the header and subheader

* You can also remove the icon by clicking on “x“ which appears on the icon

– Show Index: To show the index of records on the List View

– Is Export Supported?:

* If you check that checkbox then the download icon will appear on the right side

of the search box

41

V.III Step by Step Walkthrough

* Upon clicking the download icon on the List View, all the records can be

exported in a CSV file

Figure 5.3.56: UI

• UI:

Same as the Section component described earlier.

• Visibility:

The visibility property specifies whether or not a component is visible and the following

are the visibility types:

– Never: The field cannot be visible

– Always: The field will be always visible

– Conditional: Depending on the visibility criteria, the component can be set as

visible or not

• Component:

This field shows the name of the components with the count of their usage e.g.: if you

are adding the List View for the third time in a layout then it will display with the label

List View 3

42

V.III Step by Step Walkthrough

11. Page Header: The Page Header defines the title of the component which will act as a

container where you can drag and drop the other components in it. The Page Header name

will be displayed in the top left corner of the layout.

• Attributes of Page Header Component:

Figure 5.3.57: Attributes of Page Header

• Basic:

– Header: Name of the header which is displayed on the top left corner of the

component

– Sub Header: Sub Header is displayed above the Header in the layout. The size of

the Sub Header is smaller than the Header

– No Body: If you select this checkbox then there is no space for adding another

component under the Page Header

Figure 5.3.58: Basic

– Page Header Actions: Action is a set of operations that can be performed by

clicking on an action button, e.g. Save, Cancel, etc. You can add as many actions

as you want. each action has a workflow that actually performs an operation.

43

V.III Step by Step Walkthrough

– Overflow After: The Overflow After attribute shows actions in list format once the

limit is reached. By default, this limit is set to 3, indicating that three actions will be

shown on a Page Header Component. If a new action is added when the limit of 3

actions has already been reached, the new action will be displayed in the

drop-down list section.

• UI:

Same as the Section component explained earlier.

• Visibility:

The visibility property specifies whether or not a component is visible and the following

are the visibility types:

– Never: The field cannot be visible

– Always: The field will be always visible

– Conditional: Depending on the visibility criteria, the component can be set as

visible or not

• Component: This field shows the name of the components with the count of their

usage. e.g.: if you are adding the section for the third time in a layout then it will

display with the label Section 3

12. Counter:Counter is a component used to count the time/duration. Counter displays

duration in HH: MM: SS format. You can monitor events using a counter. counter allows

users to increase or decrease a numerical value. In simple terms, you can set it as a

stopwatch or a countdown timer. e.g. A stopwatch to record how fast one can type in a

100-word paragraph and A count-down timer to finish an exam in the stipulated time.

• Attributes of Counter:

Figure 5.3.59: Attributes of Counter

• Basic:

– Time in Milliseconds: You can give the total time in Milliseconds. Once that time is

met the Counter will stop counting the time ahead

44

V.III Step by Step Walkthrough

– Counter Order: You can set Counter orders i.e incrementing or decrementing

– Increasing: Counter will start with a 00 value and go on increasing up to the

maximum time set by you

– Decreasing: Counter will start with the time value given by you in milliseconds in

layout and goes on decreasing up to 00 value

• UI:

Same as the Section component described earlier

• Visibility: The visibility property specifies whether or not a component is visible and

the following are the visibility types:

– Never: The field cannot be visible

– Always: The field will be always visible

– Conditional: Depending on the visibility criteria, the component can be set as

visible or not

• Component: This field shows the name of the components with the count of their

usage. e.g.If you are adding the section for the third time in a layout then it will display

with the label Section 3

13. Calendar: The Calendar component is visible in three views, i.e., Monthly, Weekly, and

Daily, and by default, today’s date is selected in the component. Users can save the

records in the Calendar component.

(a) The Calendar component is used for viewing all the events in the calendar format

(b) This component can display data in Calendar format if the object bounded using the

model to it has a date and date time field in it

(c) The Calendar displays data in 3 formats i.e. monthly, weekly, and daily

• Attributes of Calender:

Figure 5.3.60: Attributes of Calender

45

V.III Step by Step Walkthrough

• Basic:

– Models: Models are used to display content (fields) in the layout.mainly used for

the creation or editing of a record. A model needs to be added when you perform

any action in an event. For the Calendar component, you need to create a Multi

Record Model, You can get help from Models for creating the models.

Figure 5.3.61: Models

* Click the Calendar icon

* To display the Date, Month, and Year in Calendar format

* Click the Month drop-down

* You can select Month, Week, and Day

Figure 5.3.62: Calender

– Workflows:

* You need to create workflows for the New and Refresh buttons of the calendar

component

46

V.III Step by Step Walkthrough

* Workflow is basically a container that automates specific actions based on

particular criteria

* If criteria are met, actions execute; otherwise, no action occurs

– New:

* You can create a new record by using New Action and for the record creation,

click on the New button

Figure 5.3.63: Calender New

– Refresh:

* To reload any previously saved information, click on the Refresh button

Figure 5.3.64: Calender Refresh

• UI:

Same as the Section component described earlier

• Visibility: The visibility property specifies whether or not a component is visible and

the following are the visibility types:

47

V.III Step by Step Walkthrough

– Never: The field cannot be visible

– Always: The field will be always visible

– Conditional: Depending on the visibility criteria, the component can be set as

visible or not

• Component: This field shows the name of the components with the count of their

usage. e.g.if you are adding the section for the third time in a layout then it will display

with the label Section 3

14. Rating: Rating displays valuation or rank on a scale. e.g. Rating can be given to a movie

from zero to five stars. Rating is used for giving appreciation to any application like, you

give ratings to applications on the Play Store or App Store.

• Attributes of Rating:

Figure 5.3.65: Attributes of Rating

• Basic:

– Value Destination Type: This attribute decides if the user wants to save a value in

a variable or model.

– Variable: From the value destination variable, you can choose the variable in

which you want to save the value of the field. You can bind the value of the

variable to the component by creating a variable.

Figure 5.3.66: Basic

48

V.III Step by Step Walkthrough

– Model: From the value destination model, you can choose the specific model in

which you can save the value of the field. You can bind a value to the component

using a model, value comes from the object that we use while model creation. You

can either choose the model from the list or you can create a new model by

clicking on the “Create New Model“ Option for your table.

Figure 5.3.67: Rating Basic

– Size: The rating can be displayed in five different sizes e.g. xx-small, x-small,

small, medium, large.

• UI:

Same as the Section component described earlier.

• Visibility:

Same as the components described earlier.

• Disability:

Same as the components described earlier

• Component:

Same as the components described earlier

49

V.III Step by Step Walkthrough

15. Carousel: Carousel is a collection of images that gets displayed one at a time. The

Carousel component displays a series of images in a single container, with image indicators

and a control button below the image panel. Carousel displays one image at a time, and

you can select particular images by clicking the indicators. Carousel provides a header and

descriptive text that displays below the image.

• Attributes of Carousel:

Figure 5.3.68: Attributes of Carousel

• Models: In the carousel, you can bind the multi-record model to display the data and

images. You can either choose the model from the list or you can create a new model

by clicking on the “Create New Model“ Option for your table.

Figure 5.3.69: Models

50

V.III Step by Step Walkthrough

• Basic:

– Head Line: The fields you created are displayed in the Head Line attribute and the

data that you saved in that field is displayed below the carousel image. Click on

Head Line and Select the field from the drop-down menu.

– Source: In the source, attribute you save the image URL which is displayed as

carousel images in the carousel component layout. Click on Source and Select

the Source from the drop-down menu.

– Description: In the Description attribute, you can give a description of the carousel

images which are displayed below the Head Line attribute. Click on Description

and Select the Description from the drop-down menu.

– Auto Scroll: If the checkbox is true then in preview mode it automatically scrolls

images

Figure 5.3.70: Carousel Basic

– Scroll Duration: You can set the duration for scrolling images in the carousel. e.g.

if you set 3 second duration then in preview mode the next image scrolls after 3

seconds.

– Animation Type: In Carousel, you can use customized animation effects for slide

transitions using the animation types. Animated Carousels are way more engaging

than still carousels. There are five types of animation which are as follows:

* Slides: A slide transition is how one slide is removed from the screen and the

next slide is displayed during a presentation

* Scale: An animation that controls the scale of an object. You can specify the

point to use for the center of scaling

* Fade: Fade animation is used to change the appearance and behavior of

objects over a particular interval of time. It will provide a better look and feel

for our applications

* Flip: Flip animation is viewed by viewing successive images in a quick motion

so that they seem to form a sequence. A flip animation is a simple type of

51

V.III Step by Step Walkthrough

animation created by viewing successive images so quickly that they seem to

form a sequence.

* Jack In The Box: A Jack In The Box, Creates a transition effect by imitating a

popular joke toy movement. It starts with the central fading in and continues

with shaking from one side to another.

Figure 5.3.71: Animation Type

• UI:

Same as the Section components described earlier.

• Visibility:

Same as for the components described earlier.

• Component:

Same as for the components described earlier.

16. Progress Bar: noKodr Progress Bar component helps Salesforce users to get a graphical

representation to show the progress of the work. It can be configured to show/hide the

Percentage of the progress, on hovering over the component it shows the current

percentage. Progress Bar displays the progress of an operation, such as a file download or

upload. Generally, the Progress Bar displays horizontally from left to right indicating the

progress of an operation.

• Attributes of Progress Bar:

52

V.III Step by Step Walkthrough

Figure 5.3.72: Attributes of Progress Bar

• Basic:

– Label:

* The label is a short description given to the Progress Bar

* Generally, the label is displayed at the top left corner

Figure 5.3.73: Progress Bar Basic

– Progress Bar Size: Progress Bars are available in four sizes i.e. x-small, small,

medium & large.

53

V.III Step by Step Walkthrough

Figure 5.3.74: Progress bar Size

– Variant: Variants display the Progress Bar with different colors to convey different

meanings.

Progress bar comes in five variants:

* Default: Shows Progress Bar in blue color

* Inverse: Shows Progress Bar in gray color

* Success: Shows Progress Bar in green color

* Warning: Shows Progress Bar in yellow color

* Error: Shows Progress Bar in red color

Figure 5.3.75: Variant

– Value: The percentage value of the Progress Bar, value is an indication of

progress. e.g. the Progress Bar denotes completion when the value is 100.

54

V.III Step by Step Walkthrough

Figure 5.3.76: Value

– Show Percentage: To indicate the progress of an operation in terms of

percentage.

Figure 5.3.77: Show Percentage

– Show Rounded: It adds a border radius to the Progress Bar to give it a rounded

look

55

V.III Step by Step Walkthrough

Figure 5.3.78: Show Rounded

– Show Vertical: Displays a vertical Progress Bar from top to bottom to indicate the

progress of an operation.

Figure 5.3.79: Show Vertical

– Value Destination Type: There are two types of Destination are available

* Variable Destination Type: This type allows you to store the values in the

variable, if you select Destination Type as a variable then it will show you the

variable that you have to store

* Model Destination Type: This type allows you to store the values in the

Models, if you select destination Type as the model then it will show you the

model that you have to store

56

V.III Step by Step Walkthrough

Figure 5.3.80: Value Destination Type

– UI:

Same as other components described earlier.

– Visibility:

Same as other components described earlier.

– Component:

Same as other components described earlier.

17. Blank: The blank component serves as an empty space between two components/fields.

The blank component is essential in the Layout Designer to enhance the user experience

by separating components/fields without visible dividers.

• Attributes of Blank:

Figure 5.3.81: Attributes of Blank

A blank component in preview mode:

Figure 5.3.82: Blank Component

57

V.III Step by Step Walkthrough

• UI:

Same as other components described earlier

• Visibility:

Same as other components described earlier

• Component:

Same as other components described earlier

18. Button Group: Buttons are interactive elements designed to trigger a specific action.

Button Groups showcase basic default buttons, buttons with icons, and different versions

grouped together in a single unit, allowing for the creation of a horizontal series of buttons

without gaps.

• Attributes of Button group:

Figure 5.3.83: Attributes of Button group

• Basic:

– Actions: Perform an action by clicking on the button. When you click or hover over

it, the selected action will take place. You have the option to add multiple actions.

To create a new action, simply click on the + icon.

Figure 5.3.84: Show Percentage

– Label: The button label is shown on the button.

– Name: The name attribute defines the button’s name.

– Left Icon: You have the option to include an icon on the left side of the button

– Right Icon: You have the option to include an icon on the right side of the button

– Variant: The variant feature enables buttons to appear in various color schemes

– Neutral: Neutral is the default button style displayed in white

58

V.III Step by Step Walkthrough

– Brand: Brand represents a blue button designed to emphasize the primary action

on a page

– Outline-Brand: Outline-brand is similar to the brand style but uses color for the

label and border only

– Destructive: Destructive is a red button indicating a negative effect

– Success: Success is a green button denoting a successful action

• UI:

Same as for the other components described earlier.

• Visibility Type:

Same as for the other components described earlier.

• Component:

Same as for the other components described earlier.

19. Tree: A tree component is a user interface element used to display hierarchical data in a

tree-like structure. It organizes data into nodes connected by edges, allowing users to

expand or collapse nodes, select items, and interact with the data.

• Attributes of Tree:

Figure 5.3.85: Attributes of Tree

• Basic:

– Model: All the models will be displayed in the list that you have created using an

object, you can choose the specific model. Models are used to display content in

the layout. You need to create a multi-record model for a Tree component, refer to

this Model.

– Create New Model: You can either choose the model from the list or you can

create the new model by clicking on the “Create New Model“ Option for your tree

59

V.III Step by Step Walkthrough

Figure 5.3.86: Basic

– Header: Name of the header which is displayed on the bottom of the component

– Id Field: Each tree node must possess a unique identifier for identification

purposes. All fields are visible with the exception of image, address, array, and

object type fields.

– Nodes: The label field is designated for displaying the label of the tree node. All

fields are visible except for image, address, array, and object type fields.

– Parent Node: The lookup field type should be utilized as a self-lookup to generate

a hierarchy. Only lookup fields are visible in this context.

Figure 5.3.87: Basic

– Icon Field: This is used to display icons for individual nodes, utilizing a field of type

”text” for alternate text.

* Format for icon field data: iconCtegory:iconName example => ’utility:user’

– Default Icon: You can set the default icon for the tree

– Is lazy Load: This checkbox type field is utilized during hierarchy creation. When

60

V.III Step by Step Walkthrough

set to true, it generates only parent-level hierarchy, with children loaded as the

user expands the tree node. There is no visible difference in the UI.

– No Search Bar: Checkbox used to hide the search box of a Tree

– No Header: Checkbox used to hide the header part of a Tree

• UI:

Other attributes same as for the other components described earlier.

– Style: The style attribute is used to add styles to a Component, such as color, font,

size, and more. Setting the style of a Component can be done with the style

attribute. The style attribute has the following syntax: “property:value” The

property is a CSS property. The value is a CSS value.

– Classes: Classes are used to apply unique styling and formatting to the fields in

preview mode. Users need to create one cdn link from the CSS tab on the layout

designer page for using classes

• Visibility:

Other attributes same as for the other components described earlier.

• Component:

Other attributes same as for the other components described earlier.

20. Field: Fields in noKodr represent what the columns represent in relational databases. It

can store data values that are required for a particular object in a record. Fields can store

different types of data.

• The Field is a generic component using which you can accept values in different

formats and data types

• e.g. number, phone, email, text, etc

• It can be bound with the model Field and variable

• If you want to accept/display data to the user without an object you can use the Field

component

• Attributes of Field:

61

V.III Step by Step Walkthrough

Figure 5.3.88: Attributes of Field

• Basic:

– Name: The name attribute specifies the name of Field

– Label: The label is a short description of the field that will be displayed before the

data input/output

– Placeholder: A placeholder is a short text, located inside the input data field

– Field Type: You can see all the fields in a list and change their types as needed.

– Layout: It is a design using which the user can arrange the fields The Layout

comes in 5 different forms:

* Stacked: In a stacked layout, the input/output field is under the field label with

a small margin around the label, and the input/output field

* Horizontal: In a horizontal layout, the input/output field is in front of the field

label with a small margin around the label, and the input/output field

* Single Column: A Single Column layout is the same as a horizontal layout the

only difference is the input/output field size is greater than the field label in a

layout

* No Label: In the No Label layout, the label name is not visible only the

input/output field is present in the layout

62

V.III Step by Step Walkthrough

Figure 5.3.89: Basic

– Hide Space: If the ’Hide Space’ checkbox is enabled, the padding around the field

will be removed

– Debounce Time in seconds: It is the time taken to complete the two actions e.g.

When you click on the save button, the time it takes to complete the save action is

debouching time

– Is Copy Enabled?: Checkbox is enabled, and users can copy the text that has

been added to the placeholder

Figure 5.3.90: UI

– Value Destination Type: There are two types of Destination are available

* Variable Destination: This type allows you to store the values in the variable, if

you select Destination Type as a variable then it will show you the variable that

you have to store

* Model: This type allows you to store the values in the Models, if you select

Destination Type as the model then it will show you the model that you have to

63

V.III Step by Step Walkthrough

store

• Config:

– Value Destination Type: We can select a particular destination type to store the

value.i.e.

– Variable: Used to store the value in a variable.

Value Destination Variable: Depending on the selected Destination Type, Value

Destination Variable will be displayed.

– Model: Used to store the value in the field of the model.

Value Destination Model: Depending on the selected Destination Type, the Value

Destination Model will be displayed.

• UI:

Same as for the other components explained earlier.

• Visibility:

Same as for the other components explained earlier.

• Validations:

– Required Type: Ensures that a specific type of input is required.

– Required Error Message: Specifies the error message to be displayed when the

required type is not provided.

– Minimum Length: Specifies the minimum length of input required.

– Min Length Error Message: Specifies the error message to be displayed when the

input length is less than the minimum required length.

– Maximum Length: Specifies the maximum length of input allowed.

– Max Length Error Message: Specifies the error message to be displayed when the

input length exceeds the maximum allowed length.

– Pattern: Specifies a pattern or format that the input must adhere to.

– Pattern Error Message: Specifies the error message to be displayed when the

input does not match the specified pattern.

• Read-only:

– Never: The field cannot be read-only

– Always: The field will be always read-only

– Conditional: Depending on the read-only criteria, the field can be set as read-only

or not

• Disability:

– Never: The field cannot be disabled

– Always: The field will be always disabled

– Conditional: Depending on the disability criteria, the field can be set as disabled or

not

• Component:

Same as for the other components described earlier

64

V.III Step by Step Walkthrough

21. Layout: Represents a responsive grid system for arranging containers on a page. Control

the layout and organization of various components like buttons, fields, tabs, icons, and

tables on record pages. The layout allows designing various layout configurable things like

workflows, events, variables, models, CSS, etc. It also helps to determine which fields are

visible, read-only, and required to use page layouts to customize the content of record

pages for your users.

• Attributes of Layout:

Figure 5.3.91: Attributes of Layout

• Basic:

– Layout: The Layout attribute displays the available list of existing Layout

Figure 5.3.92: Layout

– Variable Mapping: The layout chosen from the Layout drop-down will display

65

V.III Step by Step Walkthrough

associated variables in the Variable Mapping - Input Variable list drop-down.

These variables enable assigning values to the layout using multiple source types,

including Static, Variable, Model, Null, User, and Blank. You can add the variables

by clicking on the ’+’ icon, e.g. Record Id, Is Visible, etc.

Figure 5.3.93: Variable Mapping

Click on save, and the variable mapping will be visible

Figure 5.3.94: Edit Condition

• UI:

Same as for the other components described earlier.

• Visibility:

Same as for the other components described earlier.

• Component:

Same as for the other components described earlier.

66

V.III Step by Step Walkthrough

22. HTML: The HTML component empowers users to input and modify content in a format like

HTML, encompassing text, images, links, videos, and other elements, as well as merge text

(enabling users to create merged text using multiple values).

• Attributes of HTML:

Figure 5.3.95: Attributes of HTML

• UI:

– Component Size: The user can modify the size of the component in the layout as

per grid size

– Padding Location: Defines the position of the padding for a component. The

padding creates extra space within a component.

Figure 5.3.96: Attributes of HTML

Type of Padding Locations :

* Around: Creates padding around the component

* Top: Creates padding at the top of the component

67

V.III Step by Step Walkthrough

* Left: Creates padding at the left side of the component

* Bottom: Creates padding at the bottom of the component

* Right: Creates padding at the right side of the component

* Horizontal: Creates padding horizontally

* Vertical: Creates padding vertically

– Padding Size: The padding size of the component can be set to None, XXX-Small,

XX-Small, X-Small, Small, Medium, Large, X-Large, XX-Large

– Margin Location: Defines the position of the margin for a component. Margin

creates extra space around a component.

Figure 5.3.97: Attributes of HTML

Types of Margin Locations:

* Around: Margin gets added around the component

* Top: Margin gets added at the top of the component

* Left: Margin gets added at the left side of the component

* Bottom: Margin gets added at the bottom of the component

* Right: Margin gets added at the right side of the component

* Horizontal: Margin gets added horizontally

* Vertical: Margin gets added vertically

– Margin Size: The margin size of the view can be set to None, XXX-Small,

XX-Small, X-Small, Small, Medium, Large, X-Large, XX-Large.

– Style: The style attribute is used to add styles to a Component, such as color, font,

size, and more. Setting the style of a Component can be done with the style

attribute. The style attribute has the following syntax: “property:value” The

property is a CSS property. The value is a CSS value.

68

V.III Step by Step Walkthrough

Figure 5.3.98: Attributes of HTML

– Editor Height: The ”editor height” refers to the vertical size or dimension of an

editor, typically measured in pixels, em, %, rem, cm,vh,vw, in, indicating how tall

the editor appears on the screen

– Editor Width: The editor width” denotes the horizontal size or dimension of an

editor, representing its width across the screen, also measured in pixels, em, %,

rem, cm, vh, vw, in.

Figure 5.3.99: Attributes of HTML

• Visibility: The visibility property specifies whether or not a component is visible on the

layout or not. The following are the visibility types:

– Never: The field will not be visible at all

– Always: The field will be always visible

– Conditional: Depending on the visibility criteria, the component can be set as

visible or not visible.

• Read Only: This property specifies whether or not a component is ReadOnly and the

following are the ReadOnly conditions:

69

V.III Step by Step Walkthrough

– Never: The field will never be in Read Only I.e always editable

– Always: The field will be always read-only

– Conditional: Depending on the read-only criteria, the field can be set as Read-only

or not

• Component: This field shows the name of the components with the count of its usage.

70

V.III Step by Step Walkthrough

V.III.1.5 Models in Layout :

• Models : Models are used to display content in the layout and are typically used for record

creation or editing, as well as various types of messaging. The model needs to be added

when you perform any action in an event. Users need to create Models as per their

requirements for creating workflows or binding data on various components.

– How to create Model: To create a Multi record or Single record model

1. Go to the Model tab in the Layout designer

2. Click on the + icon

3. Enter information, click Save

Figure 5.3.100: Model Creation

• Fields of Model:

1. Label: The label is used to identify the Model at the UI.

2. Name: Name is the unique identifier of the Model.

3. Type: Display the Model’s type, there are two types that are Record, and API. Select

the type from the drop-down menu

(a) Record Type: Record type model stores the data of the Salesforce objects.

(b) API Type: API type models are used to integrate different web applications.

71

V.III Step by Step Walkthrough

Figure 5.3.101: Create Model

4. Record Count: In Models, there are two types of Record counts i.e.Single record and

Multi record

(a) single: We use single type record count, where you want to query a single record

eg. For Form components, we use single types.

(b) multirecord: We use multirecord type record count, where you want to query

multiple records like Ex. For Table components, we use multiple types

Figure 5.3.102: Record Count

5. Object Def: You can bind the object with the model

72

V.III Step by Step Walkthrough

(a) The complete list of objects in your instance is displayed

(b) Select the object from the drop-down menu

6. Offset: You can set the offset for the query on the object. If the offset is “n“ then the

query will take the records “n+1” onwards. e.g. Set Offset: 0, then the query will take

the record 1 onwards.

7. Limit: Set the limit for how many records you want to display at a time.

8. Order By: You can set the order by on the fields to records to be queried and

displayed in the Model.

73

V.III Step by Step Walkthrough

V.III.1.6 Charts : A chart is a visual representation of data designed to make information

easily understandable at a glance. Charts use graphical elements such as lines, bars, points, and

slices to convey numerical or categorical information. They play a crucial role in data

visualization, making complex datasets more accessible and aiding in the interpretation of

patterns, trends, and relationships within the data.

Figure 5.3.103: Charts

Types of Charts: There are nine types of chart

1. Column Chart

2. Group Column Chart

3. Stacked Bar Chart

4. Stacked Column Chart

5. Bar Chart

6. Grouped Bar Chart

7. Pie Chart

8. Bullet List

9. Line Chart

• Column Chart: A column chart is a type of graph that uses vertical bars to represent data

values. The length of each column corresponds to the magnitude of the data it represents.

Column charts are particularly effective for comparing values across different categories or

displaying the distribution of a dataset. The x-axis typically represents categories, while the

y-axis represents the scale of the data. Column charts are straightforward, making them a

popular choice for visually presenting simple comparisons and trends in data.

74

V.III Step by Step Walkthrough

• Group Column Chart: A grouped column chart is a type of chart that displays multiple sets

of data using vertical bars grouped together side by side. Each group of columns

represents a distinct category, and within each group, individual columns represent different

series or subcategories. This format allows for easy comparison of values within each

category as well as across different categories. Grouped column charts are useful when

you want to show variations and comparisons of multiple datasets simultaneously, making it

visually clear and accessible for the audience to analyze and interpret the data.

• Stacked Bar Chart: A stacked bar chart is a type of graph that uses horizontal bars to

represent data values, with each bar divided into segments that stack on top of each other.

Each segment within a bar represents a different category or component, and the full bar

represents the total value for that particular category. Stacked bar charts are useful for

illustrating the total and how it is divided into subcategories. They provide a visual

representation of both the individual components and the overall composition of each

category, making it easy to compare the contribution of each segment to the whole.

• Stacked Column Chart: A stacked column chart is a type of graph that uses vertical bars to

represent data values, and each bar is divided into segments that stack on top of each

other. Each segment within a bar represents a different category or component, and the full

height of the stacked column represents the total value for that particular category.

• Bar Chart: A bar chart is a graphical representation of data using rectangular bars or

columns to show the values of different categories. The length of each bar corresponds to

the magnitude of the data it represents. The bars can be either vertical (column chart) or

horizontal (bar chart), depending on the orientation.

Key features of a bar chart:

– Categories: The x-axis typically represents categories or labels that are being

compared

– Values: The y-axis represents the scale of the data, indicating the values associated

with each category

– Bars: Each bar is drawn for a specific category, with its length proportional to the value

it represents

• Grouped Bar Chart: A grouped bar chart is a variation of the standard bar chart that

displays multiple sets of data using bars grouped together side by side. Each group of bars

represents a distinct category, and within each group, individual bars represent different

series or subcategories.

Key features of a grouped bar chart:

– Categories: The x-axis typically represents categories or labels

– Values: The y-axis represents the scale of the data, indicating the values associated

with each category

– Groups: Bars within each group are positioned next to each other, allowing for easy

visual comparison of values within the same category.

This type of chart is particularly useful when you want to compare values across

different categories and within each category, compare the contributions of various

75

V.III Step by Step Walkthrough

subcategories or series. It provides a clear visual representation of the relationships

and differences between multiple data sets

• Pie Chart: A pie chart is a circular statistical graphic that is divided into slices to illustrate

numerical proportions. In a pie chart, each slice represents a proportionate part of the

whole, and the size of each slice is proportional to the quantity it represents. The entire

circle represents 100%, and each slice represents a percentage of that whole. Key features

of a Pie chart:

– Slices: Each slice represents a category or component of the data being visualized

– Proportions: The size of each slice is proportional to the quantity it represents relative

to the whole

– Totality: The sum of all the slices adds up to 100%, representing the entirety of the

data

– Color or Patterns: Different colors or patterns are often used to distinguish between

slices

• Bullet List: A bullet list is a text formatting technique used to present information in a

concise and organized manner. In a bullet list, items are typically preceded by small

symbols (bullets) to visually separate and highlight individual points. Each item in the list is

typically a short, standalone statement or phrase.

Key features of a Bullet list :

– Bullets: Small symbols, often dots or circles, precede each item in the list

– Itemization: Each point in the list is presented as a separate, concise statement

– Ordering: Bullet lists are often used for unordered or non-sequential items. For

ordered or sequential items, numbers or letters may be used

• Line Chart: A line chart is a type of graph that displays data points over a continuous

interval or time span, connecting them with straight lines. This visual representation helps

to show trends, patterns, and relationships between variables. Line charts are effective for

illustrating changes in data over time or across ordered categories.

Key features of a Line chart:

– Axes: The x-axis typically represents the independent variable (such as time or

categories), while the y-axis represents the dependent variable (the data values)

– Data Points: Each data point is marked on the chart, and a line connects these points,

emphasizing the trend or pattern

– Trends: Line charts are particularly useful for visualizing trends, showing whether

values are increasing, decreasing, or remaining relatively constant

– Multiple Lines: You can have multiple lines on the same chart, making it easy to

compare trends between different data series

– Markers: Data points are often marked with dots or other symbols to enhance visibility

76

V.III Step by Step Walkthrough

V.III.1.7 Variables : Variables enable users to manipulate data by performing operations,

calculations, comparisons, and transformations on the stored values. Variables facilitate the

passing of values between different parts of a program, such as functions, procedures, or

modules. They allow data to be shared and processed across different components of a program.

Figure 5.3.104: Variables

• How to create Variable:

1. Create a Layout

2. Go to the Variable tab in the Layout designer

3. Click on the + icon

4. Enter information, click Save

• Data Types of Variable:

1. Text: A data type used to store alphanumeric characters, including letters, numbers,

and symbols. Text fields are versatile and can hold a wide range of information, such

as names, descriptions, and comments.

2. Checkbox: A data type that represents a binary state, typically either checked or

unchecked. Checkboxes are commonly used for boolean values or to indicate options

that are selected.

3. Integer: A whole number without a fractional component. Integers are used to

represent numerical values that do not contain decimals.

4. Double: A floating-point number with decimal precision. Doubles are used to represent

numerical values that may have a fractional part.

77

V.III Step by Step Walkthrough

Figure 5.3.105: Field Type

5. Record: A collection of related data fields or attributes that represent a single entity or

object. Records are commonly used in database management systems to store and

organize structured data.

6. Object: A generic data type that can hold any type of data or a reference to an

instance of a class. Objects are used for modeling complex data structures and can

represent various entities or values.

7. Currency: A data type used to represent monetary values. Currency fields typically

include formatting to denote the currency symbol and decimal precision.

8. Date: A data type used to represent calendar dates without a specific time zone.

Dates consist of year, month, and day components.

9. DateTime: Similar to Date but also includes time information. DateTime data type

represents a specific point in time, including both date and time components.

10. Picklist: Also known as a dropdown or select list, a picklist is a user interface element

that allows users to choose one option from a predefined list of options.

11. Tags: A data type used to categorize or label records with keywords or descriptors.

Tags are commonly used for organizing and filtering data.

12. Email: A data type used to store email addresses. Email fields often include validation

rules to ensure that the entered value is a valid email address.

13. Phone: A data type used to store phone numbers. Phone fields often include

formatting and validation rules to ensure data integrity.

14. URL: A data type used to store web addresses. URL fields often include validation

rules to ensure that the entered value is a valid URL format.

15. Radio: A user interface element used to select a single option from a list of mutually

exclusive options.

16. Time: A data type used to represent a specific time of day, independent of any

particular date.

78

V.III Step by Step Walkthrough

17. Percentage: A data type used to represent values as a percentage of a whole.

Percentage fields typically store numerical values between 0 and 100.

18. Textarea: A data type used to store multiline text entries. Textarea fields allow users

to input larger amounts of text than regular text fields.

19. Duration: A data type used to represent a length of time. Duration fields can store

values such as hours, minutes, and seconds.

20. Multipicklist: Similar to a picklist, a multipicklist allows users to select multiple options

from a predefined list of choices.

79

V.III Step by Step Walkthrough

V.III.1.8 Workflow : Workflow is basically a container that automates certain actions based on

particular criteria. If the criteria are met, the actions get executed. If they are not met, then no

action will be executed. There are multiple actions in the Workflow. Eg: Push, Pop, Toaster,

Show Spinner, etc.

• Workflow Creation:

1. Go to the Workflow tab

2. Click the + icon

3. A new blank workflow screen opens

4. Need to add all the details and, Click Save

Figure 5.3.106: Workflows

Figure 5.3.107: Create Workflow

80

V.III Step by Step Walkthrough

• Logic in Workflow: There are several logic available in workflow, which can be used to

create workflows.

1. Assignment: This is the basic operation of assigning a value to a variable. For

example, x = 5 assigns the value 5 to the variable x.

2. Decision: Decisions, or conditional statements, allow the program to execute different

blocks of code depending on whether a certain condition is true or false. Examples

include if, else if, and else statements.

3. Switch: A switch statement provides an alternative way to express multiple branching.

It allows a variable to be tested for equality against a list of values. Depending on the

matching value, a different block of code can be executed.

4. Loop: Loops are used to repeat a block of code multiple times until a certain condition

is met. Common types of loops include for, while, and do-while loops.

5. Validate: Validation involves checking whether data meets certain requirements or

constraints. This could include checking for the correct data type, length, format, or

range.

Figure 5.3.108: Workflow Logics

6. Logs: Logging involves recording events, messages, or data during the execution of a

program. Logs are valuable for debugging, monitoring, and analyzing the behavior of

the software.

7. Filter: Filtering involves selecting a subset of items from a larger set based on certain

criteria or conditions. For example, filtering a list of numbers to only include even

numbers.

81

V.III Step by Step Walkthrough

8. Map: Mapping involves transforming each element of a collection based on a given

function. It applies the function to each element and generates a new collection with

the transformed values.

9. Code: The term ”code” refers to the instructions written in a programming language

that define the behavior of a software application.

10. Consume License: This refers to the process of using or activating a software license

to gain access to a particular software product or service.

11. Check License: Checking a license typically involves verifying whether a user or

system is authorized to access or use a software product. This could involve validating

license keys, checking subscription status, or verifying user permissions.

• Communication in Workflow: For Communication, there are several actions available in

Workflows that can be used for communication with internal and external sources.

Figure 5.3.109: Workflow Communication actions

1. Notify: In workflows, notifications are used to alert users or relevant stakeholders

about specific events, updates, or tasks within the process. These notifications can be

sent through various channels such as email, SMS, in-app messages, or push

notifications. For example, a workflow management system might notify team

members when a new task is assigned to them or when a deadline is approaching.

2. Bulk Notify: Bulk notifications are particularly useful when you need to inform a large

group of recipients about the same event or update. Instead of sending individual

notifications to each recipient, bulk notifications allow you to send a single message to

multiple recipients simultaneously.

82

V.III Step by Step Walkthrough

3. API (Application Programming Interface): APIs play a crucial role in workflows by

enabling different software systems or services to communicate with each other. In

workflow automation, APIs can be used to integrate different tools, platforms, or

applications, allowing them to exchange data and trigger actions seamlessly. For

example, an e-commerce workflow might use APIs to retrieve the product information

from a database, process payments through a payment gateway, or update inventory

levels in real time.

4. REST API (Representational State Transfer Application Programming Interface):

RESTful APIs follow the principles of REST architecture and are commonly used for

building web services that allow clients to interact with server resources using standard

HTTP methods. In workflows, REST APIs can be used to access and manipulate data

stored on remote servers or cloud services. For example, a workflow might use a

REST API to retrieve weather information from a third-party service, fetch data from a

social media platform, or perform operations on a cloud-based storage system.

• Data Actions in Workflow:

1. Query Records: This action involves retrieving specific data records from a database

or data source based on predefined criteria or conditions. In workflows, querying

records is often used to gather information needed for further processing or analysis.

For example, in a customer relationship management (CRM) system, a workflow might

query customer records to identify those who haven’t made a purchase in the last six

months for a re-engagement campaign.

2. Create Records: Creating records involves adding new data entries to a database or

data repository. In workflows, creating records is typically used to capture and store

information generated during the execution of a process. For instance, in an online

registration workflow, new user accounts could be created and added to a user

database when individuals sign up for a service or event.

83

V.III Step by Step Walkthrough

Figure 5.3.110: Workflow Data actions

3. Update Records: Updating records involves modifying existing data entries in a

database or data source. In workflows, updating records is often used to reflect

changes or updates to information over time. For example, in an inventory

management system, a workflow might update product quantities to reflect recent

sales or incoming shipments.

4. Delete Records: Deleting records involves removing data entries from a database or

data repository. In workflows, deleting records is used to eliminate outdated,

redundant, or unnecessary information. For instance, in a document management

system, a workflow might delete expired documents or files that are no longer needed.

• Layout Actions in Workflow:

1. Emit Event: Emit Event is used for communication between two layouts or two

workflows by Emitting Events from the source Layout. emit event is fired on any

events like click event on Button or any other events. For these Events, we have to

create Events on Layouts. Through Emit Event you can pass output (Parameter)

�Subscribe Event: Subscribe Event is used to communicate between two Layouts or

two workflows by Listening to an Event Emitted by the source Layout. For Subscribe

Event you have to select Layout and respective Event. You can assign a Workflow

that fire/emit an Event. Through Subscribe Event you can catch Input(Parameter)

84

V.III Step by Step Walkthrough

Figure 5.3.111: Workflow layout actions

2. Push Modal: Push Modal is a container that contains fields. This modal lets you create

a record. Push Modal is created on the Application layout.

3. Push Modal and Wait: Push Modal and Wait is used to open the Layout in Modal(Pop

Up) to perform various actions.e.g.for Create/Updating a new record, viewing a record,

etc. this action preserves the next action until the Modal is closed(Pop Modal). You

can configure modals with different sizes, Padding, and Header and are also able to

pass parameters through Input.

4. Pop Modal: Pop modal is used to push back Layout when we save or cancel a record.

5. Redirect: Users can be redirected to layouts or to any URL using a redirect workflow

6. Un Subscribe Event: The Un Subscribe Event is used to stop subscription of any

particular event

85

V.III Step by Step Walkthrough

V.III.1.9 Listview Creation and its Config : List View is used for showing the records of

different objects from where the user can perform CRUD operations. List View is an easily

configurable component that can be used to display the ListView on the Home Page and Record

Page. List View uses the Standard List View and the User can configure it in order to display it on

the UI by adding extra fields to the existing List View.

Figure 5.3.112: List View

• ListView Homepage Operations:

Figure 5.3.113: List View Operations

1. New: Here are the steps required to configure List View. To create a List View, Click

on Setup, then click on List View then navigate to the List View page.

2. Refresh: A refresh button is often used to update the content of a Listview interface

with fresh data. refresh button gives users a sense of control over the application’s

behavior.

3. Search: Select the field in which you want to search the records in the list view

• List View Actions:

86

V.III Step by Step Walkthrough

Figure 5.3.114: Listview page action

You can only show two actions, which are visible in the top right corner i.e. New, and

Refresh. These actions are mainly used to perform operations

1. New: To create a New record you can use the New action

2. Refresh: To Refresh the record you can use the Refresh action

3. Search: Select the field in which you want to search the records in the list view

• Filter Designer: The filter is used to filter the records as per the given criteria.Filter that

reads data in and manipulates the data to fit another output pattern or removes data that

may not be needed.

Figure 5.3.115: Filter Designer

Logical Operators: Logical operators are used to combine multiple conditions.

1. AND: The logical AND operator is an operator that performs a logical combination of

two statements. It receives the value ”TRUE” only when both statements are true. If

one of the two statements is false, the logical AND operator returns the value ”FALSE”.

2. OR: The OR operator is a Boolean operator that returns TRUE if one or both operands

are TRUE

87

V.III Step by Step Walkthrough

3. NOT: Operators that can be used to create a new compound statement from two or

more statements. It reverses the truth value of any statement it appears before.

Figure 5.3.116: Workflows

Figure 5.3.117: Workflows

• Add Condition: This is used to add multiple conditions using the “+” icon

88

V.III Step by Step Walkthrough

Figure 5.3.118: Add Condition

• Add Group Condition: It is used to add multiple conditions to a group using the “Add Group“

icon

Figure 5.3.119: Workflows

• Filter Operators:

89

V.III Step by Step Walkthrough

Figure 5.3.120: Filter Operators

1. Equals: The equal operator is used to compare two values or expressions. It is used

to compare numbers, strings, Boolean values, variables, objects, etc. The result is

TRUE if the expressions are equal otherwise it’s FALSE.

2. Start With: It returns TRUE if a string or number starts with the specified character

otherwise it returns FALSE

3. Contains: The contains operator returns TRUE if the value on the left contains the

value on the right, and otherwise FALSE.

4. End With: It returns TRUE if a string or number ends with the specified character

otherwise it returns FALSE

5. IN: IN operator allows you to easily test if the expression matches any value in the list

of values. Determines whether the value of an expression is equal to any of several

values in a specified list.

• Source Type:

90

V.III Step by Step Walkthrough

Figure 5.3.121: Source Type

1. Static: By using the Static source type, results include only records from the selected

field. Result fetching by the value which has been added under the Static. Steps To

Do:

(a) Click on “Filter”

(b) Select the [+] icon to create a New Condition.

(c) Select an appropriate “Field & Operator” from the drop-down.

(d) Choose the Source Type as a “Static”.

(e) Input value which needs to fetch in result & then “Save”.

2. Input Variable: By using an Input Variable, the result is fetched by the value that has

been added under the Input Variable, But have to make sure that the value that we are

adding is from the value of the input variable. Steps To Do:

(a) We need to create an input variable first.

(b) Click on “Filter”

(c) Select the [+] icon to create a New Condition.

(d) Select an appropriate “Field & Operator” from the drop-down.

(e) Choose the Source Type as an “Input Variable”.

(f) Select an input variable from the drop-down that needs to fetch in the result

(g) Click on Save

3. Cookie Key: By using Cookie Key, the result is fetched by the value that has been

added under the Cookie Key. But, have to make sure that the value that we are adding

is from the value of the cookie. Steps To Do:

(a) Click on “Filter”

(b) Select the [+] icon to create a New Condition.

(c) Select an appropriate “Field & Operator” from the drop-down.

(d) Choose Source Type as a “Cookie Key”.

(e) Open the Inspect by right-clicking on the respected object’s list view.

(f) Find the “Cookies“ from the Application tab.

91

V.III Step by Step Walkthrough

(g) Paste Cookies value which needs to fetch in result & then “Save”.

4. Local Storage Key: By using the Local Storage Key, the result is fetched by the value

that has been added under the Local Storage Key. But, have to make sure that the

value that we are adding is from the Local storage value. Steps To Do:

(a) Click on “Filter”

(b) Select the [+] icon to create a New Condition.

(c) Select an appropriate “Field & Operator” from the drop-down.

(d) Choose the Source Type as a “Local Storage Key”.

(e) Open the Inspect by right-clicking on the respected object’s list view.

(f) Find the “Local Storage” from the Application tab.

(g) Paste in the value that needs to fetch in the result & then “Save”

5. User: By using the User source type, the result is fetched by the value that has been

added under the User. Steps To Do:

(a) Click on “Filter”

(b) Select the [+] icon to create a New Condition

(c) Select an appropriate “Field & Operator” from the drop-down

(d) Choose the Source Type as a “User”

(e) Select a value from the drop-down that needs to fetch in the result & then save

6. Null: By using the Null source type, the result is fetched by the value that has been

Null Value. Steps To Do:

(a) Click on “Filter”

(b) Select the [+] icon to create a New Condition.

(c) Select an appropriate “Field & Operator” from the drop-down

(d) Choose the Source Type as a “Null”

(e) Select a value from the drop-down which needs to fetch in the result & then Save

7. Blank: By using the Blank source type, the result is fetched by the value that has been

Blank Value.

Steps To Do:

(a) Click on “Filter”

(b) Select the [+] icon to create a New Condition.

(c) Select an appropriate “Field & Operator” from the drop-down

(d) Choose the Source Type as a “Blank”

(e) Select a value from the drop-down that needs to fetch in the result & then Save

• List View Control:

92

V.III Step by Step Walkthrough

Figure 5.3.122: List View Control

1. New: Under List View Controls, select New to create a new of the current list view

2. Clone: Under List View Controls, click Clone to create a copy of the current list view

3. Rename: Edit the label of the list view, and then save your changes

4. Display Fields: Users can display the fields according to their requirements, With just

by single click users can switch the order of the fields on List View

5. Search Fields: The user can search any fields that are displayed on List View by using

the search box when configuring from search fields, just by single click.

6. Filter Fields: Select the field you want to apply the filter to in the list view and Click

Save.

7. UI Field: Using UI fields the user can display the fields in the List view on the home

page. UI Fields created by the user as per their requirements, after creating any UI

Fields, all those UI fields are visible in the Display Fields, and from display fields, the

user can display the fields on the home page

8. Filters: Users can give the filters as per their requirements, for any of the fields. this is

a permanent filter used to sort records

9. Delete: To delete the current list view

• List View Controls Config:

93

V.III Step by Step Walkthrough

Figure 5.3.123: List View Config

• Basic:

– Is List View Selectable: This allows the end user to change the List View at runtime. If

selected it shows a drop-down icon next to the object selector.

– Is Object Selectable: This allows the end user to change the object at runtime. If

selected it shows a drop-down icon next to the List View selector.

– Table actions: You can create multiple table actions on the List View. You can only

show two actions, which are visible in the top right corner, and the rest of the actions

are displayed under a drop-down at the right. These actions are mainly used to

perform operations such as create, refresh, etc. on the selected records or unselected

records. Each action has a workflow that actually performs an operation and the

following are the steps to create Table Action-

* Add the table actions by clicking on the ’+’ icon

* Fill in all the details in the Create Table Action model and click the Save button

* For table actions, you need to create a workflow

– Overflow After: Overflow After an attribute is used to display the actions in list format

after reaching its entered limit. By default, the value is 3 which means the three

actions will displayed on a section header. If you added the new action despite having

3 actions then the new action will appear in the drop-down list section.

– Row Actions: These Actions are to be performed at the record level for the respective

record. These actions are mainly used to read, update, or delete a single record. Each

action has a workflow that actually performs an operation. Default row actions are edit,

delete, and view, but you can create more actions as per your needs as shown below

and by following the below steps you can create Row Action-

* You can add the row actions by clicking on the ’+’ icon

* Fill in all the details in the Create Row Action model and click the Save button

94

V.III Step by Step Walkthrough

* For row actions, you need to create a workflow

– Column Actions: You can set the actions at the column level on the List View. You can

assign only one action to any column. When you click record in the column action gets

executed. Each action has a workflow that actually performs an operation. When you

set column action, that record in the cell becomes a link. When the user clicks such a

record, the action bound to that column gets executed, and the following are the Steps

to create Column Action:

* You can add the column actions by clicking on the ’+’ icon

* Fill in all the details in the Create Column Action model and click the Save button

– Layout For New: You can set the layout for table action New. When you click the New

button layout that you set will open.

– Layout For Edit: You can set the layout for row action Edit. When you click Edit from

the row action layout that you set will open.

– Is Same As New: Check this checkbox, if you want to keep the same layout for new

and edit.

– Offset: You can set the offset for the query on the object. If the offset is “n“ then the

query will take the records “n+1” onwards. For e.g. if there are 200 records and you

set offset 100 then it will show records from the 101st record on the List View.

– Limit: Number of the records to be queried at once. e.g. if there are 200 records of an

object and you set a limit of 100 then it will query the first 100 records and show them

on the List View.

– Order By: You can set the order by on the fields to records to be queried and

displayed in the List View. You can order records in ascending or descending manner.

• Config:

– Icon: You can select the icon to be displayed on the List View. Generally icon displays

on the left side of the header and subheader. You can also remove the icon by clicking

on “x“ which appears on the icon

– Show Index: To show the index of records on the List View

– Is Export Supported?: If you check that checkbox then the download icon will appear

on the right side of the search box

– Sharing Settings: The user can give the sharing setting to that particular List view.

There are three types of sharing settings as:

* Only Me: Only users can see the List View.

* Public: All users can see the List View.

* Specific User and Profiles: Only the particular user can see the list view,

depending on which users and profiles they give access to.

95

V.III Step by Step Walkthrough

V.III.1.10 Publish Layout and List Views : noKodr gives the option to Publish Layout and

List Views. Publishing helps the users to use Layouts and List Views on the Home Page or

Community, without publishing you cannot use Layouts and List Views on the Home Page and

Community.

1. Layout:

Figure 5.3.124: Publish Layout

2. Listview:

Figure 5.3.125: Publish Listview

96

V.III Step by Step Walkthrough

V.III.1.11 Add Publish Layouts & List Views to Flexi Pages : Configuration for Publishing

the Layouts by going to the Layouts row actions, and clicking on Publish. (Note: Once published

the layout then it cannot be unpublished.)

• Lightning Home Page: Only the Published layouts and List Views should be able to drag

and drop on the home page.

• Configuration to add Layouts and List Views on the Home Page:

– Go to the Home page, click on the setup icon, and go to the edit page.

Figure 5.3.126: Edit Page

– On the edit page need to drag and drop the Layout and List view in the respective

components.

97

V.III Step by Step Walkthrough

Figure 5.3.127: Custom Component

– On the edit page need to drag and drop the Layout and Listview from the dropdown

where you will get the list of all the published Layouts and List Views. From where you

can perform CRUD operation on Layout and List View on Home Page.

Figure 5.3.128: Published Layout

98

V.III Step by Step Walkthrough

Figure 5.3.129: Published ListView

• Community: Using custom components in a Salesforce Community allows you to extend

the functionality and user experience beyond what’s available out-of-the-box. Salesforce

Communities support the use of custom components, which are reusable building blocks

that you can create using the Lightning Component Framework. Here’s how you can use

custom components in a Salesforce Community: Only the Published layouts and List

Views should be able to drag and drop on the community. Configuration to add Custom

Components to Community Builder:

– Once you’ve created your custom components, you can add them to your community

using the Community Builder tool provided by Salesforce.

– Navigate to the Community Builder by going to Setup > All Sites

99

V.III Step by Step Walkthrough

Figure 5.3.130: Community Builder

– Then by creating a New site choose the appropriate template and select>Builder

Figure 5.3.131: Builder

– In the Community Builder, you can drag and drop your custom components onto

pages to incorporate them into your community’s user interface.

100

V.III Step by Step Walkthrough

Figure 5.3.132: Components on Community

– After dragging and dropping Layout and Listview on the community once you publish it

you can perform configured operations on them.

Figure 5.3.133: Layout on Community

101

V.III Step by Step Walkthrough

Figure 5.3.134: Community

102

V.III Step by Step Walkthrough

V.III.1.12 REST API Configuration : REST API acts as a communication link between two

platforms, enabling interaction through methods like GET (retrieve), POST (create), PUT

(update), and DELETE (remove).

• Ways to Configure REST API in noKodr: Rest API can be executed using Model and

Workflows

– noKodr platform > Login > Layout > Open a layout > Workflow > Rest API Action

– noKodr platform > Login > Layout > Open a layout > Model

• Prerequisite: Create a Named Credentials, Auth Provider and establish a connection. Refer

to Named Credentials and Auth Provider.

• Steps to Create Named Credentials:

1. In Salesforce Setup, navigate to ”Named Credentials” under ”Security.”

2. Click ”New Named Credential.”

3. Enter the details, including the name, URL, and identity type.

4. Configure the authentication settings based on the requirements (e.g., password,

OAuth, or JWT).

5. Save the Named Credential.

• Steps to Create Auth Provider:

1. In Salesforce Setup, go to ”Auth. Providers” under ”Security Controls.”

2. Click ”New” to create a new Auth. Provider.

3. Select the type of provider (e.g., OpenID Connect, SAML, etc.).

4. Fill in the necessary details such as the name, callback URL, and other

provider-specific settings.

5. Configure the authentication settings and set the appropriate scopes or permissions.

6. Save the Auth. Provider configuration.

By following these steps, you can create named credentials and an auth provider in

Salesforce to establish secure external connections and authenticate users for various

integration and external services.

• Steps to create a connection with external source in noKodr:

1. Create an Account to the respective web application you want to integrate with noKodr

2. Get the ’Client ID’ and ’Client secret key’ of that web application.

3. Create the auth Provider in salesforce.

4. Create the Named Credential in Salesforce using Legacy

5. Open noKodr and Create a Model using Connection as API

6. Request for the operation you want to perform by clicking the ‘Request’ tab of the

‘Update Model’

7. Click on the ‘Response’ tab of the ‘Update Model’ to generate schema as per the

response you want to get.

103

V.III Step by Step Walkthrough

8. Click on Merge.

• API Type Model: The API type model acts as a communication link between two platforms,

enabling interaction through methods like GET (retrieve), POST (create), PUT (update),

and DELETE (remove).

How to configure API type model:

– Prerequisite: Create a Connected App, Named Credentials, Auth Provider and

establish a connection as mentioned above

1. Create of Model with the following field values:

(a) Type: API

(b) Connection: Choose the desired connection to fetch records from

(c) Label: Auto-populates, mirroring the connection Label

(d) Name: Auto-populates, mirroring the connection name

(e) Execute on load: If checked, records will be fetched automatically upon

loading the component

Figure 5.3.135: Update Model

2. Click on the Request tab and choose the values respectively.

(a) Method: Choose from HTTP methods like Get, Post, Put, Delete, Head, or

Patch based on the operation you want to perform

(b) URL: Add the relevant URL that corresponds to the connection from which you

wish to get, create, update, or delete records

(c) Record Count: Set the record count to either Multirecord or Single, depending

on whether you are dealing with multiple records or a single record in the data

operation

(d) Body>Schema Designer:

104

V.III Step by Step Walkthrough

Figure 5.3.136: Schema Designer

There are two ways to provide the request body.

i. Generate Schema: Users can define fields using JSON format. For

example ”Date”: ”05/12/2023”, ”Date and Time”:”05/12/2023 11:40 AM”,

”Double”: 51.21, ”Integer”: 399, ”Object”: ””, ”Text”: ”Smith”

ii. Create New Fields: Users can create fields using the create field Model

Figure 5.3.137: Create Field

3. Click on the Response tab and choose the values respectively.

(a) Response: The user can create a new response with the help of the status

code

(b) Schema Designer:

105

V.III Step by Step Walkthrough

Figure 5.3.138: Schema Designer

i. Generate Schema: Users can define fields using JSON format. For

example ”Date”: ”05/12/2023”, ”Date and Time”:”05/12/2023 11:40 AM”,

”Double”: 51.21, ”Integer”: 399, ”Object”: ””,”Text”: ”Smith”, ”Array”: []

Figure 5.3.139: Generate Schema

ii. Create New Fields: Users can create fields using the create field Model

106

V.III Step by Step Walkthrough

Figure 5.3.140: Create Field

• ‘CRUD’ using Rest API with Model in Workflow:

– To Fetch Records: Use Get Method >

1. Create a new layout

Table Setup:

(a) Drag and drop a Table component onto the layout Designer

(b) Add Table action as New and Refresh

(c) Add row action on Table as Edit and Delete

2. Assign Model to Table Component

Assign a model to the Table with the following details:

(a) Type: API

(b) Connection: Choose a connection e.g. Sales Connect

(c) Label gets Auto-populates e.g. Sales Connect

(d) Name gets Auto-populates e.g. Sales Connect

3. Request

Request with the following details:

(a) Method: GET

(b) URL: /services/data/v56.0/query?q=select id,name,site from account

(c) Record Count: Multirecord

4. Response: Define or create a schema to fetch the response. This schema will

structure the data received from the API call ”data”: ”records”: ”Name”: ” ”, ”Id”:

” ”, ”Site”: ” ”

* In Component Attributes:

· Model: Select the model e.g. Sales Connect

· Schema Source: Select ”Response” as the source

107

V.III Step by Step Walkthrough

· Response Code: Set the response code to 200

* In Fields:

· Select data > record

· Click on the Table component, and the Model fields will be displayed on the

left side

· Drag-drop the fields on the Table component

· Create a new workflow (defining Label and Name)

* Show Spinner Action:

· Drag and drop the ”Show Spinner Action”

· Define layout item (e.g., Table), variant, and size

* Rest API Action:

· Drag and drop the ”Rest API Action”

· Set the Source API Type to Model

· Choose the Model (e.g., Sales Connect) assigned to the Table

* Hide Spinner Action:

· Drag and drop the ”Hide Spinner Action”

· Define the layout item

* Connect Actions:

· Connect the actions in the workflow

Figure 5.3.141: Workflow

5. Call the workflow on component events

(a) Refresh: table Action

(b) Select Action as Workflow

(c) Select Config and define Workflow: (Select the workflow created for Get e.g.

Get and Save)

108

V.III Step by Step Walkthrough

(d) Save & Run the Layout

109

V.III Step by Step Walkthrough

6. Preview

(a) On preview, click on the Refresh Button.

(b) The Get workflow will be executed, fetching the records

– To Create Records: To POST >

1. Create a new layout

Form Setup:

* Drag and drop a Form component onto layout Designer

* Add Form Action as Cancel and Save

2. Assign Model to Form Component

Assign a model to the Form with the following details:

(a) Type: API

(b) Connection: Choose a connection e.g. Sales Connect

(c) Label gets Auto-populates e.g. Sales Connect

(d) Name gets Auto-populates e.g. Sales Connect

3. Request

Request with the following details:

(a) Method: Post

(b) URL: /services/data/v56.0/sobjects/Account

(c) Record Count: Single

(d) Body > Schema Designer Define or create a schema to fetch the response.

This schema will structure the data received from the API call

”Name”: ” ”, ”Site”: ” ”

4. Response

Response with the following details

(a) No need to define response for POST

(a) In Component Attributes:

Basic:

i. Model: Select the model e.g. Sales Connect

ii. Schema Source: Select ”Request” as the source

iii. Now Fields will be displayed at the left corner drag and drop the fields on the

form

iv. Create a new workflow (defining Label and Name)

(b) Rest API Action

i. Drag and drop the ”Rest API Action”

ii. Set the Source API Type to Model

iii. Choose the Model (e.g., Sales Connect) assigned to the Form

(c) Toaster Action:

i. Drag and drop the ”Toaster Action.”

ii. Fill Type with ”Success” and Message with ”Record created successfully!”

iii. Save the Toaster Action

(d) Emit Action:

i. Drag and drop the ”Emit Action”

110

V.III Step by Step Walkthrough

ii. Add the event you have created

iii. Save the Emit Action

(e) Connect Actions:

Connect the actions in the workflow

Figure 5.3.142: Workflow

5. Call the workflow on component events

(a) Click on the form and navigate to Events > Save : Action.

(b) Select Action as Workflow

(c) Select Config and define Workflow: (Select the workflow created for Post e.g.

Post and Save)

(d) Save & Run the Layout

6. Preview: On preview, check if the record is getting saved by clicking on the Save

Button

Note: To execute CRUD for the Rest API go to the layout where you have drag

dropped the table.

Follow these steps on the layout where you have drag-dropped the table

1. Create a Pop and refresh workflow

2. Drag and drop POP action and add a label and Save

3. Drag and drop Workflow action and select the workflow created for the Refresh

Button

111

V.III Step by Step Walkthrough

4. Connect the actions and Save the workflow

Figure 5.3.143: Workflow

5. Click on the table and navigate to Events > New : tableAction

6. Select Action as Push Modal

7. Select Config and define Push Modal model

8. Layout: Choose the layout created for the POST method e.g Connection Post

9. Event: Select the event created on the POST Method layout

10. Workflow: Select the Pop and Refresh workflow and Save

11. Save & Run the Layout

Preview:

1. On preview, click on the New Button.

2. And Fill the data in the fields and save

3. Check the same on the Connected app i.e. Salesforce Account >navigate to

Accounts from app launcher > view the change

• To Update Records: Patch >

1. Create a new layout

Form Setup:

(a) Drag and drop a Form component onto the layout Designer

(b) Add Form Action as Cancel and Update

2. Create a variable:

(a) Add Label & Name

(b) Type: Object

112

V.III Step by Step Walkthrough

3. Add Schema:

(a) Add Label and Name

(b) Field Type: Object

(c) Schema: Add Schema Id, Name, and Site

(d) Click Save

Figure 5.3.144: Add Schema

4. Assign Model to Form Component

Assign a model to the Form with the following details:

(a) Type: API

(b) Connection: Choose a connection e.g. Sales Connect

(c) Label gets Auto-populates e.g. Sales Connect

(d) Name gets Auto-populates e.g. Sales Connect

5. Request

Request with the following details

(a) Method: Patch

(b) URL:/services/data/v56.0/sobjects/Account/variable:object.Id (Note: Use merge

text for Id)

113

V.III Step by Step Walkthrough

Figure 5.3.145: Merge Text

(c) Record Count: Single

(d) Body > Schema Designer Define or create a schema to fetch the response. This

schema will structure the data received from the API call ”Name”: ” ”, ”Site”: ” ”

(e) Response: No need to define response for Patch

– In Component Attributes:

Basic

(a) Model: Select the model e.g. Sales Connect

(b) Schema Source: Select ”Request” as the source

(c) Now Fields will be displayed at the left corner drag and drop the fields on the

form

(d) Create a new workflow (defining Label and Name)

(e) Workflow 1: For e.g. name it as Put Data

– Log Action:

(a) Drag and drop the Log Action

(b) In the Config section, add Log Source: Variable and choose the Variable:

Select the variable you created

(c) Add Action details and save the log action

114

V.III Step by Step Walkthrough

Figure 5.3.146: Logs

– Assignment Action:

(a) Drag and drop the Assignment Action

(b) Add conditions

Condition 1:

i. Destination Type: Model

ii. Model: Select the model assigned to the Form

iii. Schema Source: Request

iv. Fields: Keep it blank, but ensure that fields are visible

v. Operator: Set

vi. Source Type: Variable

115

V.III Step by Step Walkthrough

vii. Variable: Select the variable you created at the start

Condition 2:

i. Destination Type: Model

ii. Model: Select the model assigned to the Form

iii. Schema Source: Request

iv. Fields: Id

v. Operator: Set

vi. Source Type: Null

Figure 5.3.147: Assignment

6. Connect Actions

(a) Connect the actions in the workflow

116

V.III Step by Step Walkthrough

Figure 5.3.148: Add Schema

(b) Save the workflow

(c) Assign Workflow 1 on the on-load event of the form Workflow 2. For e.g. name it

as Patch Records

– Rest API Action:

* Drag and drop the ”Rest API Action”

* Set the Source API Type to Model

* Choose the Model (e.g., Sales Connect) assigned to the Form

– Toaster Action:

* Drag and drop the ”Toaster Action.”

* Fill Type with ”Success” and Message with ”Record updated successfully!”

* Save the Toaster Action

– Emit Action:

* Drag and drop the ”Emit Action”

* Add the event you have created

* Save the Emit Action

* Connect Actions: Connect the actions in the workflow

117

V.III Step by Step Walkthrough

Figure 5.3.149: Workflow

* Save the workflow

* Assign Workflow 2 on the Update button

* Save & Run the Layout

7. Preview: On preview, check if the record is getting saved by clicking on the Update

Button.

Note: To execute CRUD for the Rest API, go to the layout where you have

drag-dropped the table.

Follow these steps on the layout where you have drag-dropped the table:

(a) Create a Pop and refresh workflow

(b) Drag and drop POP action and add a label and Save

(c) Drag and drop the Workflow action and select the workflow created for Refresh

Button

(d) Connect the actions and Save the workflow

118

V.III Step by Step Walkthrough

Figure 5.3.150: Workflow

(e) Click on the table and navigate to Events > Edit : tableAction

(f) Select Action as Push Modal

(g) Select Config and define the Push Modal model

(h) Layout: Choose the layout created for the Patch method e.g Patch Records

(i) Event: Select the event created on the Patch Method layout

(j) Workflow: Select the Pop and Refresh workflow

(k) Click Save

(l) On Events > Add mapping on Edits workflow

(m) Input Variable: Select the variable created on the patch layout

Operator: Set

Source Type: Output Variable

Output Variable: Record

119

V.III Step by Step Walkthrough

Figure 5.3.151: Input Mapping

(n) Save Run the Layout

Preview:

(a) On preview, click on the Edit Button i.e. row action

(b) Fill the data in the fields and update

(c) Check the same on the Connected app i.e. Salesforce Account >navigate to

Accounts from app launcher > view the change

• To Delete Records: Delete

1. Create a workflow in Rest API Presentation where you have dragged and dropped the

table details

Figure 5.3.152: Model

2. Request:

120

V.III Step by Step Walkthrough

Figure 5.3.153: Request

For URL merge text follow

Figure 5.3.154: Merge Text

Note : No need to define Schema for delete

3. Response: No need to define response for Delete

4. Workflow: Delete Records

– Prompt Action: Drag and drop the prompt action

121

V.III Step by Step Walkthrough

Figure 5.3.155: Prompt

– Rest API Action: Drag and drop the Rest API action

Figure 5.3.156: Rest API

– Toaster Action: Drag and drop the Toaster action

122

V.III Step by Step Walkthrough

Figure 5.3.157: Toaster

– Connect Actions: Connect the actions in the workflow

Figure 5.3.158: Connect Action

5. Save the workflow

6. Assign the workflow on table action Delete

7. Click on the table > Events > Delete :rowAction

123

V.III Step by Step Walkthrough

Figure 5.3.159: Delete Row Action

Figure 5.3.160: Workflow

8. Add mapping on the workflow

Figure 5.3.161: Input Mapping

9. Save and Run the layout

10. Preview: On preview, check if the record is getting deleted by clicking on the delete

button Button.

Check the same on the Connected app eg. Salesforce Account >navigate to Accounts

from the app launcher > view the change.

124

VI Contact Us

For more information visit www.orektic.com, www.noKodr.com

You can also schedule a product demo to know more about noKodr simply by filling out the form

here.

If you have any concerns or queries then please contact us at support@orektic.com

125

https://www.orektic.com/
https://www.nokodr.com/
https://www.orektic.com/pages/individual-pages/contact.html
mailto:support@orektic.com

	Introduction
	Orektic
	Enzigma LLC

	Product Introduction
	Product Features
	Product Versions
	Configuration Guide
	Installation Steps
	Pre-requisites
	Step by Step Walkthrough
	Setup
	Types of Layout and Layouts Creation
	Layouts and its Row Actions
	Components and its Config
	 noKodr Components and it’s Attributes
	Models in Layout
	Charts
	Variables
	Workflow
	Listview Creation and its Config
	Publish Layout and List Views
	Add Publish Layouts & List Views to Flexi Pages
	REST API Configuration

	 Contact Us

